

Keep it Simple, Sustainable! When Is ML Necessary in Cloud Resource Management?

Thaleia Dimitra Doudali

Assistant Professor IMDEA Software Institute, Madrid, Spain

Sunday, March 30th 2025

GreenSys workshop at EuroSys/ASPLOS 2025 Rotterdam, Netherlands

Current Challenges in Cloud Computing

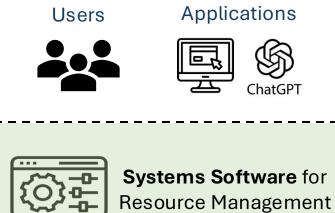
1. Cloud servers are severly under-utilized ~20%.

- Cloud providers over-provision resources to meet peak demand.
- Users over-estimate their resource needs.

2. Datacenters produce massive amounts of CO2.

- Globally datacenters emit millions of metric tons of CO2, which is equivalent to millions of long-haul flights.
- Idle servers still consume energy! Energy waste.
- Al significantly contributes. Training GPT-3 emits 284 tons of CO2.

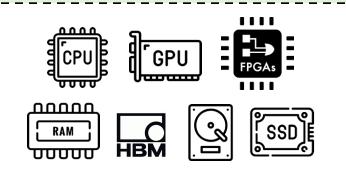
System-level Resource Management



Resource Management Systems are responsible for:

Allocate resources to <u>any</u> users and applications.

Monitor resource usage, analyze data access patterns.



(Heterogeneous) Hardware Resources

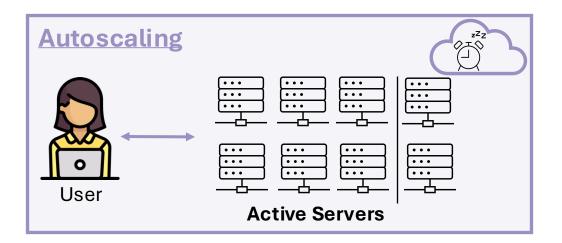
Opposite the second state of the second state

to improve application performance and resource efficiency.

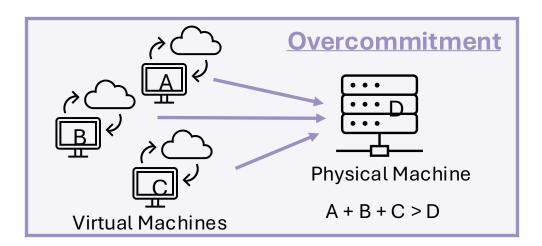
Cloud Resource Management Techniques

The following techniques help increase resource utilization and efficiency.

Basic idea: don't give to the user what they ask for, only what they actually use.

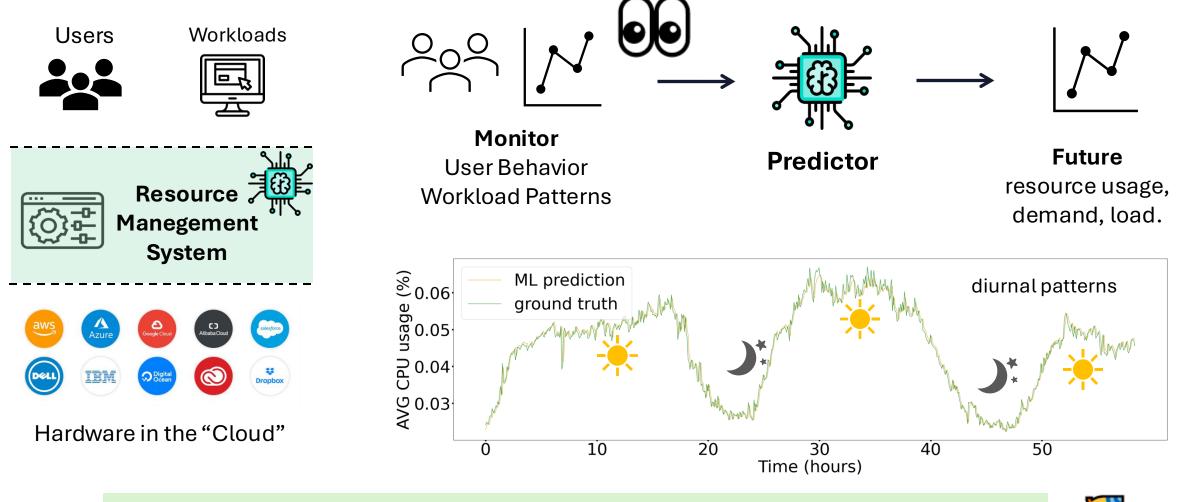


Dynamically **scale up or down** the number of computational resources e.g., active servers, number of CPUs.



Allocate **more virtualized** resources than the ones physically available.

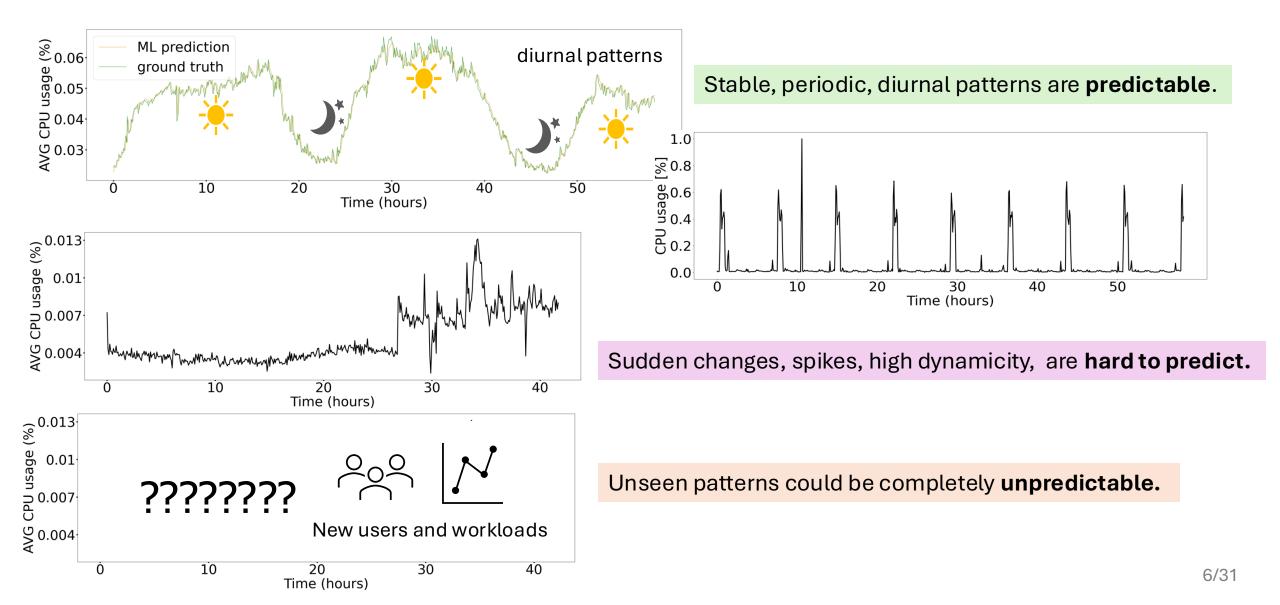
The Key: Resource Usage Forecasting



Accurate Predictiors → Timely and Effective Resource Management → Resource Efficiency.

(<u>á</u>

Accurate Resource Usage Forecasting is Challenging



Using Machine Learning in Resource Management

- Learn complex patterns.
- High accuracy.
- Use as a black-box.
- Transfer and continuous learning.

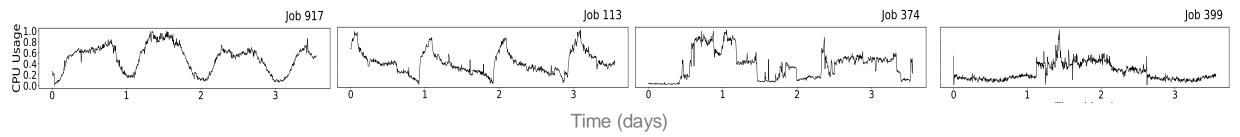
- High overheads (time, storage).
- Engineering effort for production-level use.
- Interpretability concerns.
- Sustainability concerns.

This talk: **(When)** Is Machine Learning **Necessary** to Use in System-level Cloud Resource Management?

Effectiveness of *ML models* in Cloud Resource Usage *Prediction*

Systematic Experimentation with LSTMs

1 job \rightarrow Many similar tasks



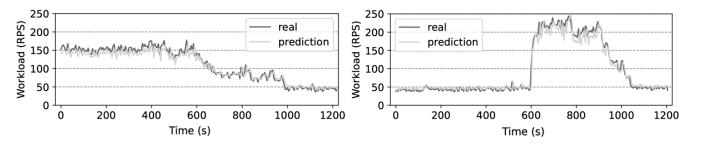
Trained 1 LSTM model per job.

Models tested across different tasks of the same job.

Model 113 tested across jobs 374, 399, 917.

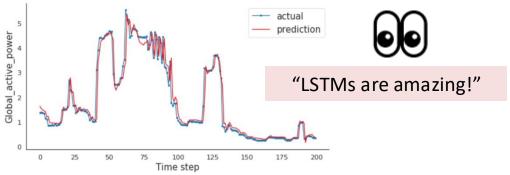
LSTMs Are Great! And Others Agree!

Use Case: ML inference Serving



[EuroMLSys '23] "Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems" by Salmani et al.

Use Case: Predict Power Consumption

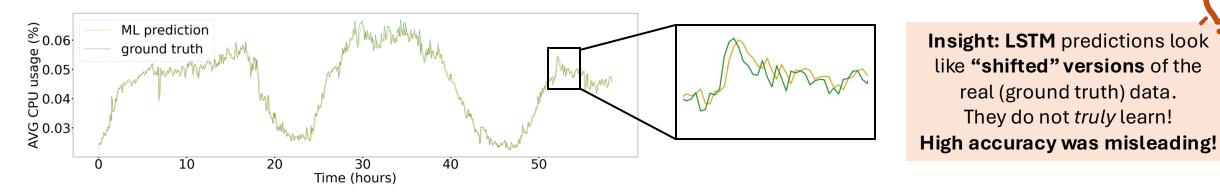


[medium.com]"Time Series Analysis, Visualization & Forecasting with LSTM" by Susan Li

like "shifted" versions of the

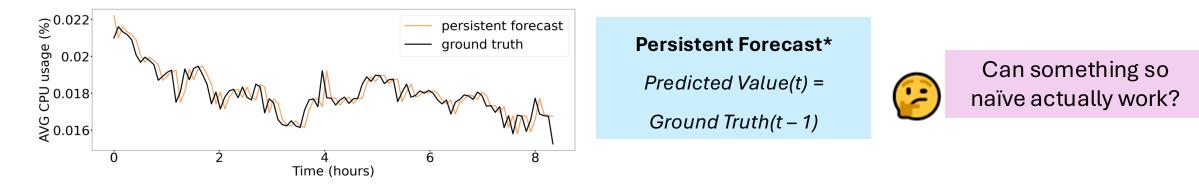
real (ground truth) data. They do not *truly* learn!

Our Analysis:

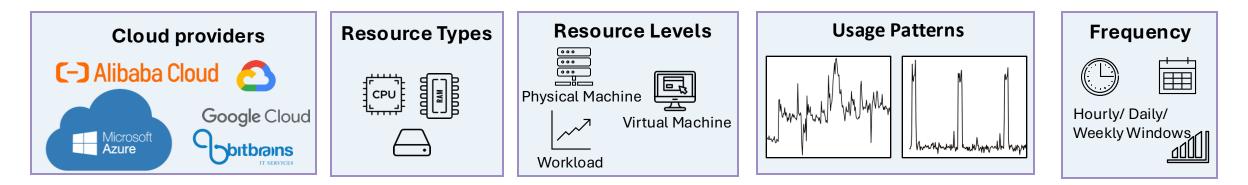


A Simple and Practical non-ML Predictor

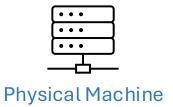
Idea: Predict a shifted version of the ground truth, similar to the LSTMs.

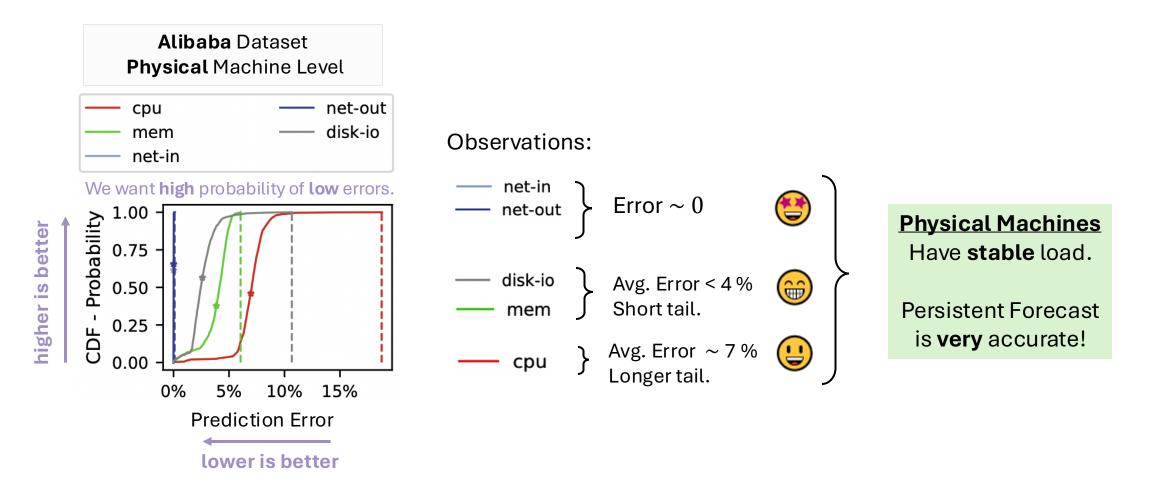


Extensive experimentation with public open-source datasets across different:

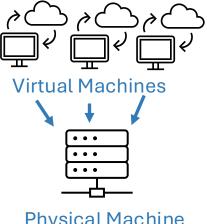


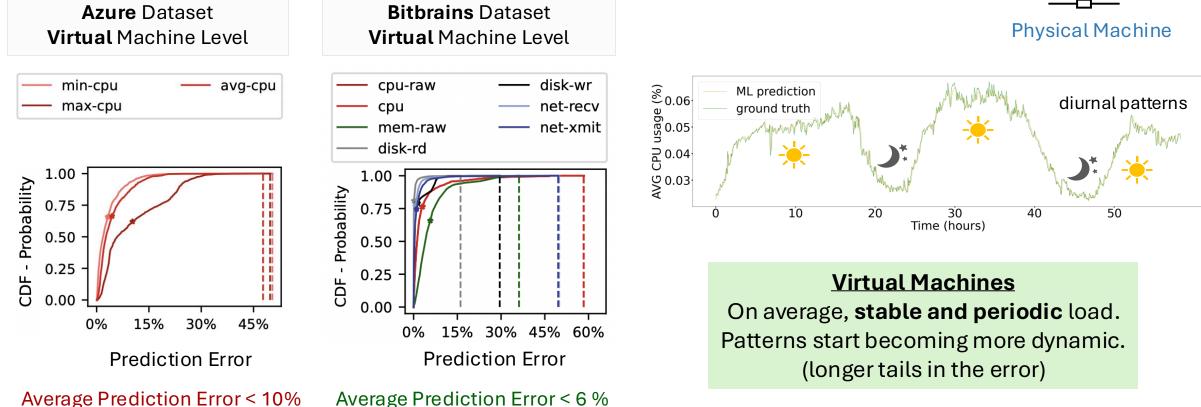
Results – Physical Machines



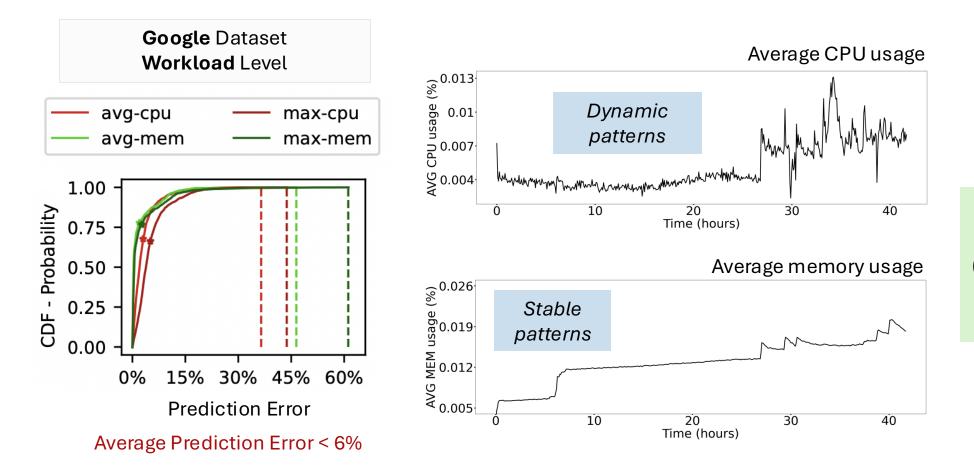


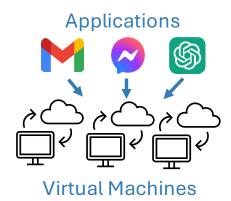
Results – Virtual Machine





Results – Applications

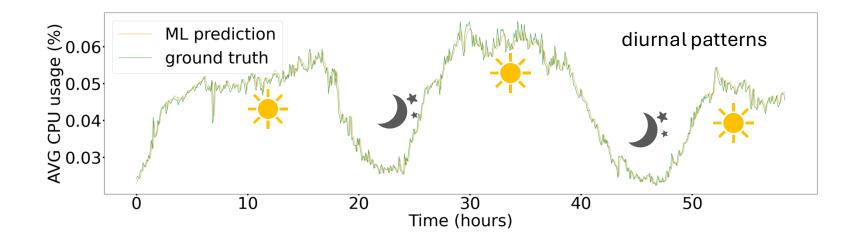




Applications Most dynamic patterns. (longest tails in the error) Depends on the type of resource!

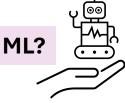
Why the Persistent Forecast Works?

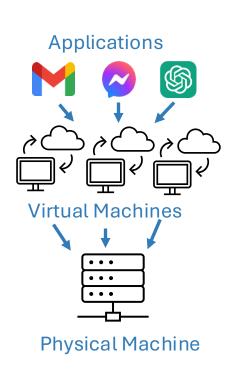
Overall, on average, the persistent forecast is **very accurate**, prediction error < 6%. Why?



Because cloud resource usage is highly persistent over time, it changes very little every e.g. 5 minutes.

Characterization Summary





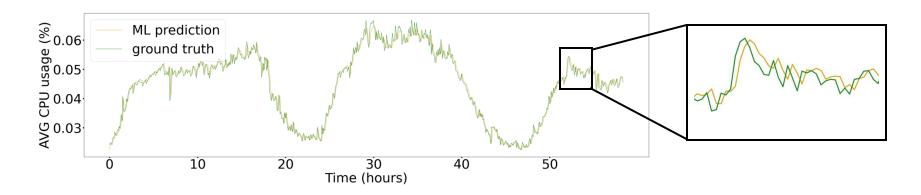
Level	Pattern	Persistence	
Application	Dynamic	Low	Predict with ML
Virtual Machine	Periodic	Medium	Predict with non-ML
Physical Machine	Stable	High	f it will be highly accurate!

Resource Type	Pattern	Persistence	
CPU	Dynamic	Low	← Predict with ML
Memory	Stable	High	Predict with non-ML
Disk	Stable	High	it will be highly accurate!
Network	Stable	High	
			-(

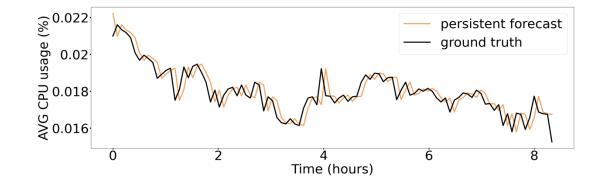
Data-driven choice!

Lessons Learned When using ML models to learn data across time

Lesson 1: Sometimes ML doesn't truly learn. Need for fine-tuning. Visualize to validate achieved accuracy.



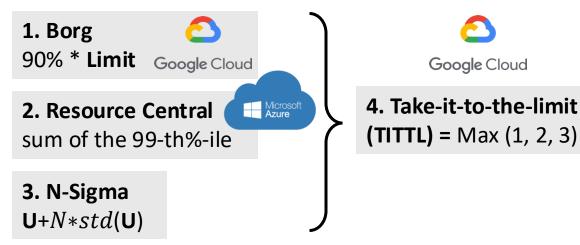
Lesson 2: Not everything needs ML. Naïve, simple forecasts can accurately predict highly persistent data.



Effectiveness of *Predictor Models* in Cloud Resource *Management*

Non-ML Predictors for Resource Overcommitment

Existing Predictors Future **U**sage =



Why Max?

To eliminate potential *under*-estimations, which may cause:

Degraded workload performance.

Unecessary resource auto-scaling.

User SLA violations.

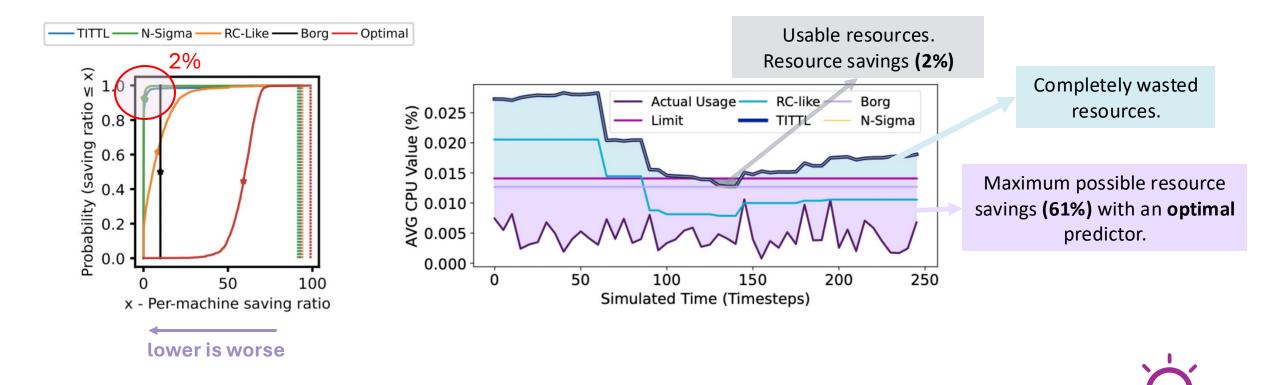
19/31

Simple, lightweight, explainable and easy to engineer in production-level.

Do they accurately predict resource usage or just protect from under-estimations??

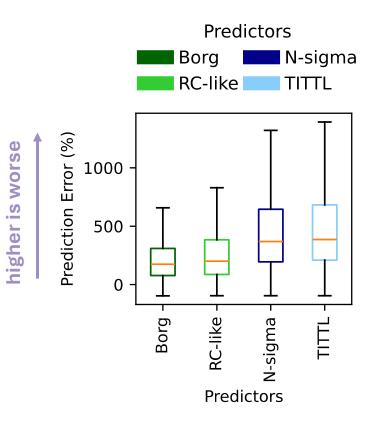
Current Predictors Allow for Low Resource Savings

Resource savings: Excess resources that can be reused/reallocated to other users / workloads.



Savings and overcommitment are **possible** only when predictions are **lower** than the resource **limit.**

Do they Even Predict?



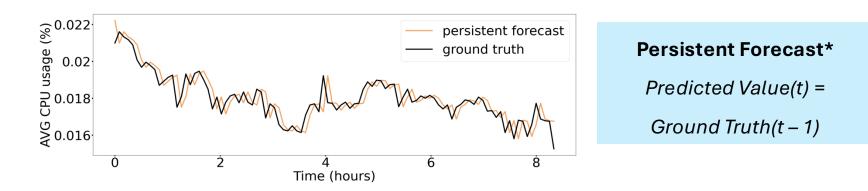
Prediction error is extremely high, especially for TITTL.

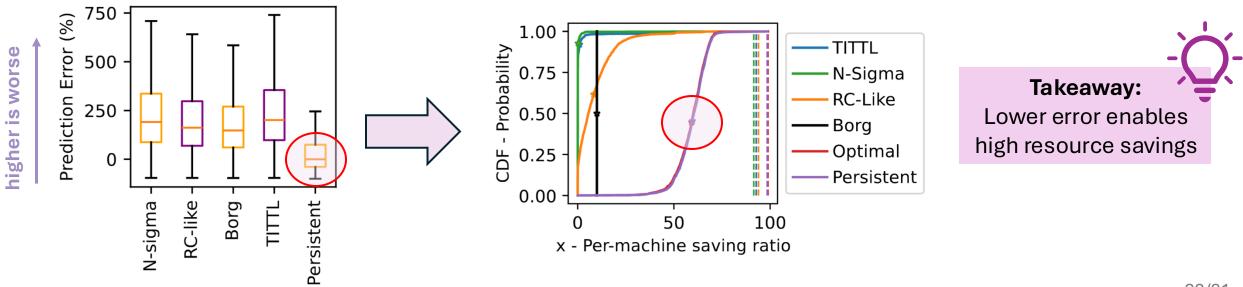
Predicted resource usage >> resource limit. The system caps predictions to the value of the limit.

(;;) NO overcommitment is happening for 94% of the cases we examined, due to the predictor's OVERestimations.

Predictors just protect from under-estimations, *allowing* overcommitment only 6% of the times.

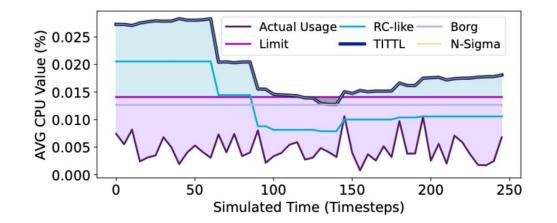
A Simple and Practical Predictor





Lessons Learned When Integrating Prediction Models in Systems

Lesson 1: High Prediction error leads to predictions that don't make sense > resource limit.

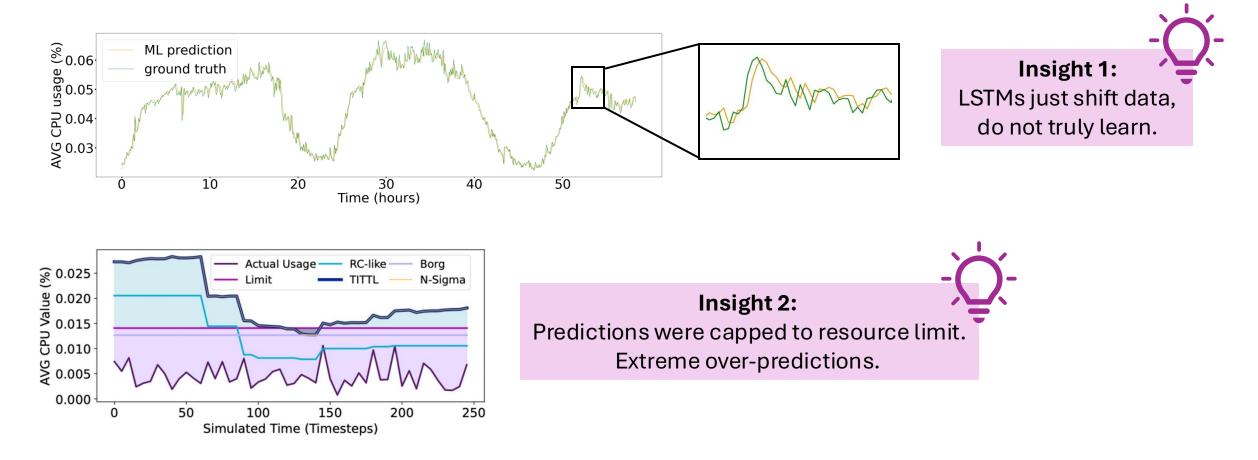


Lesson 2: High Prediction error allowed for very low resource savings and minimal overcommittment, **defeating the purpose for which it was used for.**

Recommendations on the Integration of ML in Systems

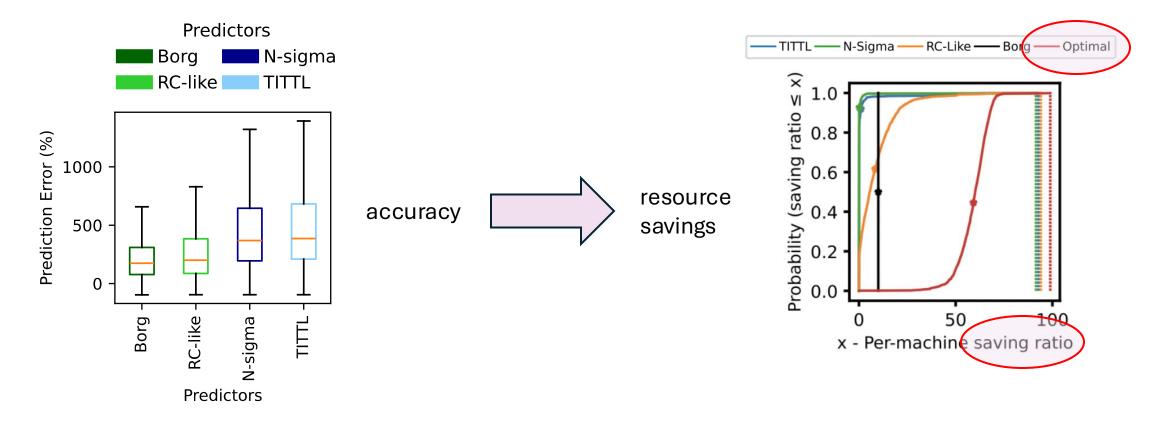
Recommendation 1- Visualize!

"1 image is worth 1000 words".. Always visualize predictions!



Recommendation 2 – Accuracy is not just a number

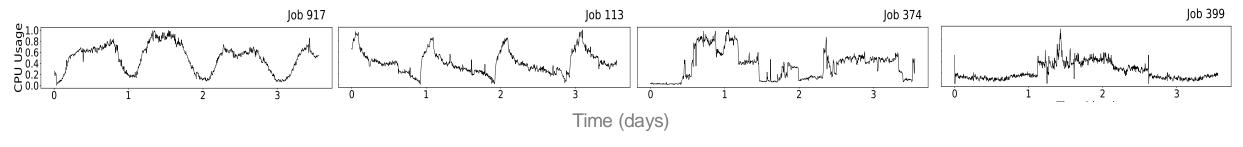
Check impact on **system-level metrics**, such as resource efficiency, application performance etc. Compare with **optimal** system baseline, if 100% accurate predictions were possible



Recommendation 3 – Choose Simplicity!

Can you get similar accuracy with non-ML methods, to allow for simplicity and no overheads?

1 job → Many similar tasks



Trained 1 LSTM model per job.

Models tested across different tasks of the same job.

Model 113 tested across jobs 374, 399, 917.

How to Integrate ML in Systemlevel Resource Management?

Proposed Approach - K.I.S.S.

We build upon the KISS system design principle [US Navy 1960].

-- Simplicity should be a design goal!

Use ML only when and where necessary.

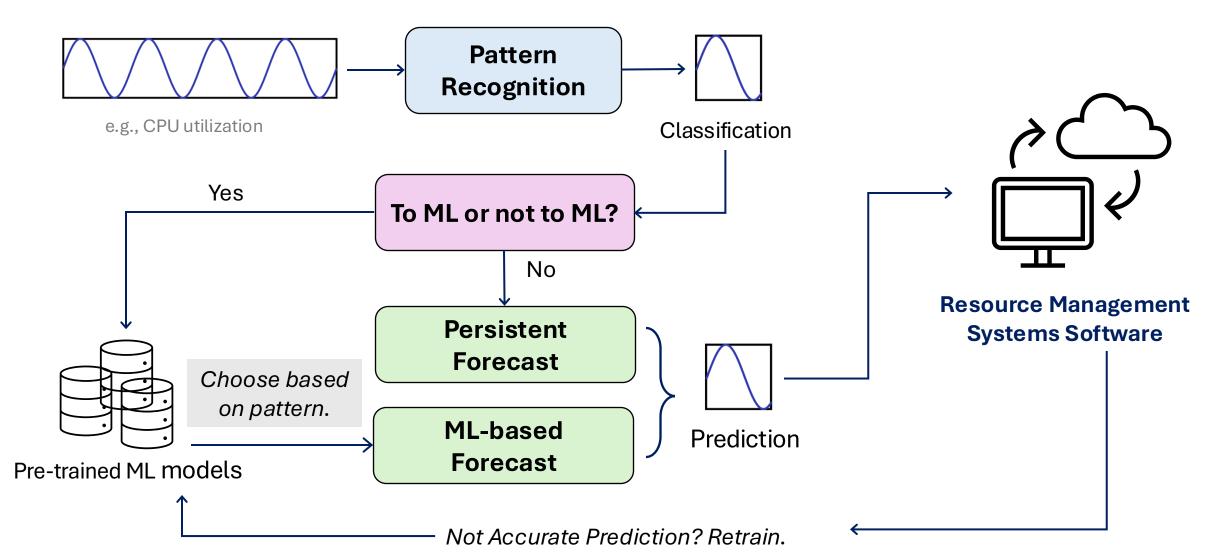
We propose K.I.S.S = Keep it Simple, Smart / Sustainable!

- Smart: (Clever) Use of ML
- Sustainable: Minimal use of ML

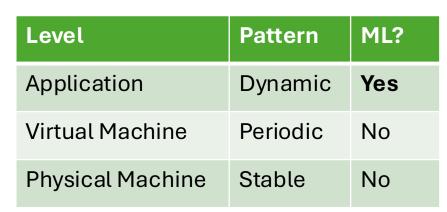
Goal: Maximize prediction accuracy and resource efficiency, in return for minimal ML overheads and impact.

[Thaleia Dimitra Doudali] <u>https://www.sigops.org/2023/k-i-s-s-keep-it-simple-smart/</u> [Thaleia Dimitra Doudali] <u>https://www.sigarch.org/think-twice-before-using-machine-learning-to-manage-cloud-resources/</u>

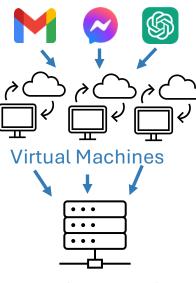
Proposed System Design for ML Integration



Is Machine Learning Necessary?



Туре	Pattern	ML?
CPU	Dynamic	Yes
Memory	Stable	No
Disk	Stable	No
Network	Stable	No



Applications

Physical Machine

Website

We propose K.I.S.S = Keep it Simple, Smart / Sustainable!

