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Current Challenges in Cloud Computing

1. Cloud servers are severly under-utilized ~20%.

- Cloud providers over-provision resources to meet peak demand.

- Users over-estimate their resource needs.

2. Datacenters produce massive amounts of CO2.

- Globally datacenters emit millions of metric tons of CO2, which is equivalent to millions of long-haul flights.
- Idle servers still consume energy! Energy waste.

- Al significantly contributes. Training GPT-3 emits 284 tons of CO2.
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System-level Resource Management

Users Applications _
Resource Management Systems are responsible for:
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Cloud Resource Management Techniques

I-i]') The following techniques help increase resource utilization and efficiency.
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Q Basic idea: don’t give to the user what they ask for, only what they actually use.
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Dynamically scale up or down
the number of computational resources
e.g., active servers, number of CPUs.
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Virtual Machines BBl

Allocate more virtualized resources than the
ones physically available.
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The Key: Resource Usage Forecasting
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Accurate Resource Usage Forecasting is Challenging

AVG CPU usage (%
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Using Machine Learning in Resource Management

Advantages gi Challenges
 Learncomplex patterns. * High overheads (time, storage).
* High accuracy. * Engineering effort for production-level use.
* Useas ablack-box. * Interpretability concerns.
* Transfer and continuous learning. e Sustainability concerns.
This talk: (When) Is Machine Learning Necessary to To ML or notto ML? 2

Use in System-level Cloud Resource Management? //37
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Effectiveness of ML models in Cloud
Resource Usage Prediction



Systematic Experimentation with LSTMs

1 job 2 Many similar tasks
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ODOOOO
OoONPOYOO

0 I 2 3 0 1 2 3 0 i 2 3 0 i N 3

Time (days)
Trained 1 LSTM model per job.

Models tested across different tasks of the same job. Model 113 tested across jobs 374, 399, 917.
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LSTMs Are Great! And Others Agree!

Use Case: ML inference Serving Use Case: Predict Power Consumption
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[SoCC ‘23] Is Machine Learning Necessary for Cloud Resource Usage Forecasting?
Georgia Christofidi , Konstantinos Papaioannou, Thaleia Dimitra Doudali.
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A Simple and Practical non-ML Predictor

Idea: Predict a shifted version of the ground truth, similarto the LSTMs.

Ground Truth(t-1)

§0'022 persistent forecast
; —— ground truth
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Persistent Forecast*

Predicted Value(t) =

)

Extensive experimentation with public open-source datasets across different:

Can something so
naive actually work?
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[SoCC ‘23] Is Machine Learning Necessary for Cloud Resource Usage Forecasting?
Georgia Christofidi , Konstantinos Papaioannou, Thaleia Dimitra Doudali.
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Results — Physical Machines ==

Physical Machine
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Georgia Christofidi , Konstantinos Papaioannou, Thaleia Dimitra Doudali. 12/31



R
Results — Virtual Machine = L
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Applications

MQ.

Results — Applications
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Why the Persistent Forecast Works?

Overall, on average, the persistent forecast is very accurate, prediction error < 6%. Why?
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Because cloud resource usage is highly persistent over time, it changes very little every e.g. 5 minutes.
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[SoCC ‘23] Is Machine Learning Necessary for Cloud Resource Usage Forecasting?
Georgia Christofidi , Konstantinos Papaioannou, Thaleia Dimitra Doudali.
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Characterization Summary e

To MLornotto ML?
Lovel [ Pattem | persistence.

=

Applications Application Dynamic Low <—— Predictwith ML
' \' ? Virtual Machine Periodic Medium Predict with non-ML
P p Y N Physical Machine Stable High it will be highly accurate!
1< O3O¢ &3¢
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N fonours bpe Fatrs [ Forssnee
el Dynam|c H Predict with ML
M tabl High
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Physical Machine Disk Stable High - it will be highly accurate!
Network Stable High B L,
Data-driven choice! ’_Q‘

[SoCC ‘23] Is Machine Learning Necessary for Cloud Resource Usage Forecasting?
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Lessons Learned
When using ML models to learn data across time

]
S\ : U4
Lesson 1: Sometimes ML doesn’t truly learn. Need for fine-tuning. Visualize to validate achieved accuracy. “ - A
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Effectiveness of Predictor Models In
Cloud Resource Management



Non-ML Predictors for Resource Overcommitment

Existing Predictors

l’
Future Usage = Why Max?
1. Borg D ) A To eliminate potential under-estimations,
90% * Limit  Google Cloud Google Cloud which may cause:

2. Resource Central & & > 4. Take-it-to-the-limit * Degraded workload performance.
“th%-i TITTL) = Max (1, 2,3 )

sum of the 95-th%-ile ( ) ( ) * Unecessary resource auto-scaling. @

3. N-Sigma * UserSLAviolations.

U+N=*std(U) y,

Simple, lightweight, explainable and easy to engineer in production-level.

@ Do they accurately predict resource usage or just protect from under-estimations??

[EuroMLSys ’24] Do Predictors for Resource Overcommitment Even Predict? Georgia Christofidi and Thaleia Dimitra Doudali. 19/31



Current Predictors Allow for Low Resource Savings

Resource savings: Excess resources that can be reused/reallocated to other users / workloads.

—— TITTL —— N-Sigma —— RC-Like —— Borg —— Optimal
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2001 . . 0.000-
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4
<

lower is worse

Savings and overcommitment are possible only when predictions are lower than the resource limit. ’ =

Usable resources.

Resource savings (2%)

—— Actual Usage—— RC-like Borg
— Limit w— T|TTL N-Sigma
—
50 100 150 200 250

Simulated Time (Timesteps)

Completely wasted
resources.

Maximum possible resource
savings (61%) with an optimal
predictor.
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Do they Even Predict?

Predictors
I Borg M N-sigma
I RC-like TITTL Prediction error is extremely high, especially for TITTL.
S
5 1000 7 Predicted resource usage >> resource limit.
”SJ £ 00 T a The system caps predictions to the value of the limit.
B | T
? I
= o1 T 1 |
- T - T NO overcommitment is happening for 94% of the
(@) ©
s = E E cases we examined, due to the predictor’s OVER-
£ g " estimations.

Predictors

Predictors just protect from under-estimations, allowing overcommitment only 6% of the times.

[EuroMLSys *24] Do Predictors for Resource Overcommitment Even Predict? Georgia Christofidi and Thaleia Dimitra Doudali. 21/31



higher is worse

A Simple and Practical Predictor

AVG CPU usage (%
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Takeaway: ‘="

Lower error enables
high resource savings
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Lessons Learned
When Integrating Prediction Models in Systems

Lesson 1: High Prediction error leads to predictions that don’t make sense > resource limit.

—— Actual Usage —— RC-like Borg

& 0.025; —— Limit — TITTL N-Sigma
g 0.020 1
2

% 0.010- A
S 0.005-
> 0.005

0.000 +— . , .
0 50 100 150 200 250
Simulated Time (Timesteps)

Lesson 2: High Prediction error allowed for very low resource savings and minimal
overcommittment, defeating the purpose for which it was used for.
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Recommendations on the
Integration of ML in Systems



Recommendation 1- Visualize!

“1 image is worth 1000 words”.. Always visualize predictions!

N\ V4
3 ML prediction T - O -
%006 - w«. | r.“JI"‘\_’ “i“‘ I,‘I ) / s , \
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' | | : do not truly learn.
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Recommendation 2 — Accuracy is not just a number

Check impact on system-level metrics, such as resource efficiency, application performance etc.

o
o
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Compare with optimal system baseline, if 100% accurate predictions were possible -
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Recommendation 3 — Choose Simplicity!

Canyou get similar accuracy with non-ML methods, to allow for simplicity and no overheads?

1 job = Many similar tasks

Job 917 Job 113 Job 374 Job 399
v10
Eo:
204
t
R 1 2 0 1 2 3 0 1 2 3 0 12 3
Time (days)

Trained 1 LSTM model per job.

Models tested across different tasks of the same job.
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ol 1
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Similar accuracy for
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Model 113 tested across jobs 374, 399, 917.
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How to Integrate ML in System-
level Resource Management?



Proposed Approach - K.I.S.S.

We build upon the KISS system design principle [US Navy 1960].

-- Simplicity should be a design goal!

Use ML only when and where necessary.

We propose K.1.S.S = Keep it Simple, Smart / Sustainable!
- Smart: (Clever) Use of ML
- Sustainable: Minimal use of ML

Goal: Maximize prediction accuracy and resource efficiency,

in return for minimal ML overheads and impact.

[Thaleia Dimitra Doudali] https://www.si rg/2023/k-i-s-s-keep-it-simple-smart/
[Thaleia Dimitra Doudali] https://www.sigarch.org/think-twice-before-using-machine-learning-to-manage-cloud-resources/
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Proposed System Design for ML Integration

AVAVAVAV S IR==00 AN
e.g., CPU utilization Classification p CK\B
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2 J Resource Management
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ML-based ) Prediction
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Not Accurate Prediction? Retrain.
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Applications

MO
N Y/

, ' P oY

No!! @ At least not always.. (&) |_u_|<)| ¢ ¢

s Machine Learning Necessary? Y%

@ Virtual Machines
N v/

When is ML necessary?

Application Dynamic Yes Dynamic
Memory  Stable No
Virtual Machine Periodic  No
Disk Stable No
Physical Machine  Stable No Network  Stable No
Website
KEER IT SIMPLESMART
We propose K.1.S.S = Keep it Simple, Smart / Sustainable! Jhﬂl’l](
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