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• Effects of climate change are accelerating


• Addressing climate change: decarbonize and reduce emissions

Sustainability and Climate Change
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• Defining trend of our time: internet, mobile, and cloud systems
Computing’s Demand is Growing Exponentially
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• Growth driven by data-intensive and AI workloads

• ML and deep learning workload doubling every 3.4 months


• Energy use grew more slowly due to aggressive energy/PUE optimizations

•

Impact of AI Growth 
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Fig courtesy: Strubell ‘20 Fig courtesy: uptime institute
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• Energy efficiency: energy consumed per unit of work done


• Carbon efficiency: CO2 generated per unit of work done


• Carbon efficiency is not same as energy efficiency	 

• Highly energy efficient systems can still be carbon inefficient! 


• Design systems to be both energy- and carbon efficient

Energy efficiency vs Carbon efficiency
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• How much carbon emissions will future cloud workloads generate?

Carbon Impact of Cloud AI Workloads: How much?
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Optimistic View
Pessimistic View

E. Strubell et. al, AAAI 2020 D. Patterson et. al. IEEE Computer 2022

Both studies predated the emergence of generative AI



• How can we use AI to decarbonize cloud infrastructure and 
workloads? 

Research Question
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• Motivation


• Decarbonization Basics


• Carbon First approach 


• Future challenges

Talk Outline
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• Carbon neutral:  Buy carbon offsets from energy market

• offsets emissions


• Net-zero via 100% renewables: Buy renewable energy to cover electricity usage over a year  

• reduces emissions


• 24/7 matching (Carbon-free): Use zero-carbon energy at hourly granularity  [Google’20]

• significantly reduces emissions


• Zero carbon: use zero-carbon energy at “all times”

Decarbonizing Computing In Practice
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• Net-zero using 100% renewables will still generate emissions


• True zero carbon: needs fine time-scale matching

• Substantially complicates energy management  

• Requires overprovisioning of renewables or zero-carbon sources such as nuclear

Supply-side Decarbonization Challenges
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Fig courtesy: Urs Holzle



• Supply-side methods: switch to low-carbon energy sources

• Carbon offsets, zero-carbon matching, renewable sources


• Demand-side methods: modulate demand to reduce emissions


• Both supply and demand-side methods will be  necessary to reach “true zero” emissions


• Computing workloads tend to be elastic in nature

• Can we exploit flexibility in workload to reduce emissions?

Decarbonization Using Demand-side Optimizations
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Carbon Intensity of Electricity Varies Across Space & Time
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30x
Spatial Variations
Move to the greenest data center 
possible

6x
Temporal Variations
Move to a time slot with the lowest 
carbon emissions

Run when and where low-carbon energy is available.



Computing workloads are uniquely flexible
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Job 
arrives

run immediately

run later

run slower

run intermittently

run faster

run elsewhere

t = 0 time

Driven by efforts to  
reduce costs,  

improve user experience,  
and scale.



• CarbonFirst: make carbon-efficiency first-class design concern

• Similar to performance, reliability, …


• Key Goals:


• Expose fine-grain energy and carbon usage to data center applications


• Provide carbon control mechanisms to modulate carbon usage 


• Enable flexible policies to optimize the carbon usage of cloud applications


• Promote demand-size methods that maximizes use of zero-carbon energy

Carbon First: Decarbonizing Cloud Computing
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• Availability of “green” electricity varies across regions and time

• Regions with more solar/wind have lower carbon cost


• Optimize the carbon usage of elastic cloud applications 


• Approach: shift cloud workloads in time & to regions with green energy

Basic Approach
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Design of green distributed cloud applications



• CI reflects the average weighted carbon intensity

CarbonCast: ML-driven carbon intensity forecasting.

16

Source Coal Natural gas Renewables  
(solar, wind etc.)

CEF (g/kWh) 760 370 0
CI =

∑ (Ei × CEFi)
∑ Ei

Coal
25%

Wind
75%

CI   = 760*0.25 + 0*0.75 
           = 190 g/kWh 

Lower CI Greener Electricity→

How can we predict future CI variations?



• Two-tier ML-based architecture

CarbonCast: ML-driven carbon intensity forecasting.
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Region MAPE
California 13.37

PJM 4.80

Germany 13.93

Actual vs Forecasted California ISO

9.78% MAPE) on average across regions



• Batch and data processing workload have time elasticity


• Wait-a-while [Wiesner 2021] - Suspend-resume approach

• Pause computations when carbon cost is high

• Resume computations when carbon cost is low

Carbon Control via Time Shifting
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California ”duck” 
 curve

Fig courtesy: Wiesner’21



• Exploit elastic nature of machine learning training


• Approach: match resources use to carbon intensity fluctuation

Greening Machine Learning via Continuous Scaling
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Carbon cost of electricity Schedule more in low carbon periods 

45% carbon reduction



• Suspend-resume increase completion time by 7X

• Wait-and-Scale: scale up when carbon cost is low and pause when it is high

Carbon-aware Resource Scaling
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PyTorch ML Training

Embarrassingly parallel job.
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• Distributed cloud applications rarely scale linearly

• Sub-linear or non-linear scaling common due to hardware/software bottlenecks


• Scaling up during low carbon periods reduces carbon efficiency!

• Need to understand scaling behavior to implement optimal carbon-aware scaling

Challenges in Continuous Scaling 
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[Sigmetrics’24]



Decarbonizing AI
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sense
optimize

reduce

What is the carbon intensity of my electricity?  
Watttime, electricityMaps, CarbonCast, 

How do I deploy these optimizations?

When and where should I run my training/inference? 
• CarbonScalar [Sigmetrics’24]: Scale ML training when carbon is low.

• DTPR [Sigmetrics’24]: Online algorithm that considers switching costs. 

• CUFF [e-Energy’23]: Saving power in GPU clusters. 

• Ecovisor [ASPLOS’23]: A carbon-aware hypervisor. 

• GAIA [ASPLOS’24]: A carbon-aware cloud scheduler.



• Computing systems need to become sustainable  

– AI-based approaches hold promise 

• Exploit elasticity in computing workloads to reduce carbon footprint 

•  Significant challenges remain and will to be addressed in coming decades 


• New project: NSF CoDec — Computational Decarbonization of Societal Infrastructure

Concluding Remarks
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• Questions?


• http://codecexp.us  and http://lass.cs.umass.edu  


• Acknowledgements: A. Lechowicz, Q. Liang, W. Hanafy, D. Maji, A. Souza, N. Bashir, 
D. Irwin

Thank you
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http://codecexp.us
http://lass.cs.umass.edu

