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Sustainability and Climate Change

» Effects of climate change are accelerating
Climate change: Extreme weather
events are 'the new norm'

» Addressing climate change: decarbonize and reduce emissions
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Computing’s Demand is Growing Exponentially
* Defining trend of our time: internet, mobile, and cloud systems

x1075
8 -

aW S AI eXx N et -1———-—' Smart Transportation

fomeneannifl) Smart Cities
6 F I_ntel Pentium AWS is Launched .--'-—--'. Precision Agriculture
Microprocessor .

e Every Imaginable

- OE O O O N E E OE N E W WO m ’0.

Computing Demand
[transistors per capita]
S

o . , | Aspect of Life
E ! , .
: Earth Simulétor .
P Book '
o | ow::(;0 00 : Supercomputer ] Iph;one, Macbook qé%
: : : P L
' ' ' P Google
: ' : o _ RankBrain ChatGPT
1 - is Ann.ounced . .
0 @ @ @ @—
1985 1990 1995 2000 2005 2010 2015 2020 2025
—— Client/Server Computing —— ~——  Pervasive —— — Rise of Al ——
Computing Era
——— Web-based Apps —— —— Rise of Smartphones —
University of

Massachusetts
Source: “Unimaginable Output: Global Production of Transistors” - Darrin Qual Ambherst




Impact of Al Growth

« Growth driven by data-intensive and Al workloads
ML and deep learning workload doubling every 3.4 months
Energy use grew more slowly due to aggressive energy/PUE optimizations

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute 25
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Energy efficiency vs Carbon efficiency

Energy efficiency: energy consumed per unit of work done

Carbon efficiency: CO2 generated per unit of work done

Carbon efficiency is not same as energy efficiency
Highly energy efficient systems can still be carbon inefficient!

Design systems to be both energy- and carbon efficient



Carbon Impact of Cloud Al Workloads: How much?

« How much carbon emissions will future cloud workloads generate?
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Optimistic View

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink

D. Patterson et. al. IEEE Computer 2022

Both studies predated the emergence of generative Al
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Research Question

* How can we use Al to decarbonize cloud infrastructure and

workloads?
COMPUTING s
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Talk Outline

Motivation

Decarbonization Basics

Carbon First approach

Future challenges



Decarbonizing Computing In Practice

In 2020, Amazon became the world' /largest

Facebook says it has reached net zero
emissions

corporate purchaser of renewable energy.

C

Apple says it's now powered by 100 percent Carbon neutral since 2007.
renewable energy worldwide Carbon free by 2030.

» Carbon neutral: Buy carbon offsets from energy market
offsets emissions

* Net-zero via 100% renewables: Buy renewable energy to cover electricity usage over a year
reduces emissions

* 24/7 matching (Carbon-free): Use zero-carbon energy at hourly granularity [Google’20]
significantly reduces emissions

» Zero carbon: use zero-carbon energy at “all times”



Supply-side Decarbonization Challenges

* Net-zero using 100% renewables will still generate emissions

Carbon-free energy
supply

aaaaaaa y1 December 31
* Gaps in carbon-free energy

Data Center
Electricity

Fig courtesy: Urs Holzle

Hourly carbon-free energy performance at an example data center

* True zero carbon: needs fine time-scale matching
Substantially complicates energy management
Requires overprovisioning of renewables or zero-carbon sources such as nuclear
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Decarbonization Using Demand-side Optimizations

Supply-side methods: switch to low-carbon energy sources
Carbon offsets, zero-carbon matching, renewable sources

Demand-side methods: modulate demand to reduce emissions

Both supply and demand-side methods will be necessary to reach “true zero” emissions

Computing workloads tend to be elastic in nature
Can we exploit flexibility in workload to reduce emissions?
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Carbon Intensity of Electricity Varies Across Space & Time

Energy
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Computing workloads are uniquely flexible

Job

arrives
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Carbon First: Decarbonizing Cloud Computing

« CarbonFirst: make carbon-efficiency first-class design concern
Similar to performance, reliability, ...

« Key Goals:

Expose fine-grain energy and carbon usage to data center applications

Provide carbon control mechanisms to modulate carbon usage
Enable flexible policies to optimize the carbon usage of cloud applications
Promote demand-size methods that maximizes use of zero-carbon energy
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Basic Approach

« Avalilability of “green” electricity varies across regions and time
Regions with more solar/wind have lower carbon cost

« Optimize the carbon usage of elastic cloud applications

« Approach: shift cloud workloads in time & to regions with green energy

AWS Regions

400 1 —— California —~—~ Canada Ontario Uruguay
- g wrlass
§ 3501 TR Coeptanat Yo £
X W %% Chis,
g 3001 g o s o © [T <
Q LS West @ a0 A
22501 2 3 % i
fy d
2 2001 Asia $9
€ 1501 -
I St
O 50{ __ pe—=remr™ TN momv Pacif
- AW s (10 15y
0 T T T — T T T T AWS Edge Locatioas (52)
11-2100 11-2112 11-2200 11-2212 11-2300 11-2312 11-2400 =
Design of green distributed cloud applications
University of
M15

Massachusetts
Amberst



CarbonCast: ML-driven carbon intensity forecasting.

» Cl reflects the average weighted carbon intensity

Source Coal Natural gas Renewables
CI . Z (El X CEF[) (solar, wind etc.)
o _ CEF (g/kWh) | 760 370 0
2E

CI =760*0.25 + 0*0.75 Lower Cl — Greener Electricity
=190 g/kWh

How can we predict future CI variations?
M16
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CarbonCast: ML-driven carbon intensity forecasting.

 Two-tier ML-based architecture
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Carbon Control via Time Shifting

« Batch and data processing workload have time elasticity

« Wait-a-while [Wiesner 2021] - Suspend-resume approach

Pause computations when carbon cost is high
Resume computations when carbon cost is low

workload
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Greening Machine Learning via Continuous Scaling

» Exploit elastic nature of machine learning training

* Approach: match resources use to carbon intensity fluctuation
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Carbon-aware Resource Scaling

» Suspend-resume increase completion time by 7X

« Wait-and-Scale: scale up when carbon cost is low and pause when it is high
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[Sigmetrics’24]

Challenges in Continuous Scaling

» Distributed cloud applications rarely scale linearly
Sub-linear or non-linear scaling common due to hardware/software bottlenecks

e Scaling up during low carbon periods reduces carbon efficiency!
Need to understand scaling behavior to implement optimal carbon-aware scaling

non-linear scaling
>

Performance (throughput)

Resources
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Decarbonizing Al

. What is the carbon intensity of my electricity?
Watttime, electricityMaps, CarbonCast,

When and where should | run my training/inference?

* CarbonScalar [Sigmetrics’24]: Scale ML training when carbon is low.
* DTPR [Sigmetrics’24]: Online algorithm that considers switching costs.
‘\"' * CUFF [e-Energy’23]: Saving power in GPU clusters.

reduce

| How do I deploy these optimizations?

* Ecovisor [ASPLOS’23]: A carbon-aware hypervisor.
* GAIA [ASPLOS’24]: A carbon-aware cloud scheduler.
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Concluding Remarks

Computing systems need to become sustainable

Al-based approaches hold promise

Exploit elasticity in computing workloads to reduce carbon footprint

Significant challenges remain and will to be addressed in coming decades

New project: NSF CoDec — Computational Decarbonization of Societal Infrastructure
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Thank you

e Questions?

EXPEDITIONS:

* http://codecexp.us and http://lass.cs.umass.edu CoDEc

* Acknowledgements: A. Lechowicz, Q. Liang, W. Hanafy, D. Maji, A. Souza, N. Bashir,
D. Irwin
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